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FURTHER COMMENTS ON THE APPLICATION OF THE METHOD OF
AVERAGING TO THE STUDY OF THE ROTATIONAL MOTIONS OF A

TRIAXIAL RIGID BODY, PART 2

1. Introduction

In [A.R.,1971], we described some of the results which wE

have obtained in applying the averaging technique described in

[F.R.,1971] to the variational equations which arise in treat-

ing the perturbations of the free rotational motions of a tri-

axial rigid body. In [A.R.,1971] we carried out the first step

of the averaging procedure and derived the averaged differential

equations for a set of canonical variables ( k, 3k) for the

problem of a triaxial body in a precessing, elliptic orbit

about an attracting center. The development was carried out

to the point that the averaged differential equations [A.R.,

1971,(5.31)] are in a form which can readily be integrated if

it is so desired. The second step of the averaging procedure

was not carried out for these canonical variables (o( ki, k)

because we were planning to use the averaging technique to

develop first-order secular solutions for an alternative set

of noncanonical variables. In [F.R.,1972] we began our dis-

cussion of the development of these secular solutions by carry-

ing out the first step of the averaging procedure for a con-

venient set of noncanonical variables. In the present report,

we complete the second and final step in the development of

these first - order secular solutions.

References to our earlier reports of June 16, 1970,
February 19, 1971, August 2, 1971 and February 21, 1972 are
indicated by [J.R.,1971], [F.R.,1971], [A.R.,1971] and
[F.R.,1?72], respectively.
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2. First-Order. Secular Solution

Equations (4.24)' may be integrated numerically with a

much longer integration step time than may be used with equations

(4-.3) In this way, we can obtain the first-order secular solu-

ttfia for the rotational motion under the influence of the

gravity-gradient torque. We can also, howeveri integrate the

averaged system (4.24) analytically with the aid of the inte-

gral (4.30). We address ourselves to this problem in the re-

mainder of this section.

To begin with, we attempt to integrate (4.24(b)), noting

that -s iis constant. We first express cH (and hence s 
H
)

in terms of 6H by substituting (b) and (c) of (4.25) into

(4.30). We find that, to first order,

2.
c = - (cl h c h ca h (2.1)

It follows from (2.1) that

1/2 4 c
3 + 2 1/2

(AX) (-c + A3 + A2 c + Ale + A (2.2)

where

A = c''h2

4b't

All equations designated (4.iJ) i,j, nonnegative integers,
refer to equations given in [F.R.,1972].
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I* 4b' (1-C)
A = h

o l 2 
c' I LI

8a 'b' 'C
h

C" h 2

- 4b' 1 2 a 112 _

2h bI2

c'hCh - 1)
bI I I -1) /

a"

c h

If (2.2) is substituted into (4.24(b)), we can write

dcH

4 * 3 c2 +A ) 1/2
(-C e. +A 3C +A2CeH +Alel +A

= -(A*)1/2s .2dt. (2.3)
.+ GP

In order to integrate (2.3), we first note that the bi-

quadratic equation

4 Ac 3 X-2
+ A3 H + A2CH + AlcH+ A (2.4)

has the following allowable roots:

(i) four distinct real roots.

(ii) four real roots with two identical roots,

3

A = -

3



(iii) two distinct real roots with a pair of complex roots,

(iv) two identical real roots and a pair of complex roots.

In what follows, we consider each of the four cases.

Case (i): Four distinct real roots

In this case, we can write equation (2.3) in the Jacobian

normal form for real roots [see (BF250.04) and (BF250.06) W

dce

1/2

[( al-C 
)

( a2-Hel ) ( a-C
)

( ce-a4
)

-(A ) / a n +.. 
+ U 

(2.5)

1/2

r(al-a
3
)(a2 -a4)1

if al, a2, a
3

and a
4

are the real roots of the biquadratic

equation (4.4), and it is assumed that a1 >a2 >a3 >a4 . The

variable co is related to u through the equation
H

co = A1 +A2 sn
'

u.

A3 +A4 sn2 u"
, 0:< U < K .

du
g du =

where

(2.6)

$ Reference to equations in H and Book of Elliptic Integrals
for Engineers and Physicists, Byrd,P.F. and Friedman, M.D.,
Springer,Berlin, 91954, are prefixed by the notation BF.
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Here K is defined by the integral

a/2

K =d
(l-kJ (1 k} 11/2

0 (1-k(" sins )

where ki is the modulus of Jacobian elliptic functions and in-

tegrals. Explicit values of k* and A
i
, i=1,2,3,4 will be given

in the study of the special cases which follows.

Since the time rate of change of cg is real, the value of

CH must either lie between al and a2 inclusive or between a3

and a
4

inclusive. We will analyze (2.5) in the subcases which

follow.

(1) alCHZ > a2 : The A
i
, i=1,2,3,4, have the values

A1 = al(a2- a4) , (a)

A2 = a4( a l - a2 ) , (b)

(2.7)

A3 = a2 - a4 , (c)

A4 = a1- 2 (a)

and kf' has the value

k* = (al - a2)(a - al) (2.8)

(al- a 3 )( a 2 - a4 )
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for this and the remaining three possiblities under Case (i).

If we integrate (2.5) with respect to u from 0 to u (i.e.,

integrating with respect to time t from tl to t), we find

[see (BF257.00)] that

u =+ 1(A) s2 ( t-t, (2. 9)

where tl is the value of t at which cH = al

Substituting (2.9) into equation (2.6), we obtain the

first-order secular solution for co and thus the first-order

secular solution for H 

(2) a > CH > a2 : The Ai, i=1,2,3,4, have the values

A
1
= a2 (a3 - a1 ) , (a)

A1 = a 2 ) , (b)
(2.10)

A
3

= a3 - a (c)

A4 = al - a2 . (d)

If we integrate (2.5) with respect to time from t2 to t, we

find [see(BF256.00) ] that

U2 =+ 1 .(A)1/2 s?. (t-t , (2.11)
where t2 is the value of tat which = a2

where t2 is the value of t at which CeH = a2
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Substituting (2.11) into equation (2.6), we obtain the

first-order secular solution for OH.

(3) a3 < C6H a4 : The Ai, i=1,2,3,4, have the values

A1 = a3 (a4 - a2 ) (a)

A2 = a 2 (a3 - a4) , (b)

(2.12)

A3 a
4
- a2 , (c)

A4 a3 a (d)

If we integrate (2.5 ) with respect to time t from t3 to t,

we have [see (BF253.00)) that

u3 + 1 (A+) s1/2 (t-t3) (2.13)

where t3 is the value of t at which cg = a3

Substituting (2.15) into equation (2.6), we obtain the

first-order secular solution for H'.

(4) a3 c ce < a4 ; The Ai, i=1,2,3,4, have the values

A1 = a4(al - a3) , (a)

A2 = al(a3 - a4) , (b)

(2.14)
A
3
= 

1
- a

3
, (c)

A4 = 3 -a 4 , (d)
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If we integrate (2.5) with respect to time t from t
4

to t,

we find (see(BF252,00)] that

u + (A ) -s ( t-t (2.15)

where t
4

is the value of t at which co = a4.

Substituting (2.15) into equation (2.6), we obtain the

first-order secular solution for eH.

The associated first-order secular solution for the var-

iable Y H for each of the subcases described above, is readily

obtained from (2.1). This eliminates the need to integrate

(4.24(a)) directly. Four more integrals of (4.24) remain to

be determined. We consider next the variable .
H

In order to integrate equation (4.24(c)), we first re-

write it in the form

c 2

x3 (sl-r) =VH - (xs
1

3X) 31'H)c -X3' . (2.16)

H HS~H

We note that if we can integrate c I/s. and c2 with respect

to time, to first-order, we can then obtain the solution for CH.

From relations (4.25(b)) and (4.30), it is found, to

first-order, that /

2
c hYH= h = h0 (c" 'I a''I hzo - Ch)

CH=- h ° = -h =-2b'' b'; (2.17)
sH e hn-hc h -hh

1H H zo
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If we introduce the identities

= 1 ( 1
2h h+hzO

= ( 1
2 h- hz o

2 h+hZ-
Zo

h-hzo

zo

equation (2.17)

C H = D1

sH

takes the separated form

1
h-c

aH

I + D
3

th+c 
&11

where

D
1

= - 1 (a''h2 -
2

D
2

= - 1 (a''h2 +
2

b'"h + c")

D = a''h .

We can express the right hand side of (2.19) in terms of

u if we replace c through the use of (2.6). We use (2.5)

to replace t by u" as the variable of integration. We then

obtain the differential form

S (a)1
h2-hzo

zo

hz

K2-h2o

h 
z 0

h -hz O

(b) (2.18)

(c)

(2.19)

b''h + c'')
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CYH dt = -

SH

g
(A) 1/29 5LID 1

h~'A3-A 1
)

A3+A4 sn2u

1-r 1 sn-u'

+ D2 A3+AI sn2 u

h3 +A 1- ' 2 sn2 u
2

I A -A-a = 4 

-2 A3 - A1

2 A +A

2 =A + A1

du (2.20)

( a)

(2.20) '

(b)

Upon integrating (2.20) from t
i

to t, we find, from (BF336.01)

and (BF337.01) . that

t

Y H dt =

SeH s8 o

D 1

h(A3-A1)

(2.21)

+ D2

h( A
3 +Al )

LA3 (V1 (Ui u2) _ V1 (0° 23)

- A4 (W1 (U 2) - W1( , ))] 3 u i

+

where

Ili=t
t i

A3 (Vl(ut 2) -V1(0l1(

-
- A W (Ui, y 1) - W (0O I I),
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where i=1,2,3,4, and

V1( u:i -j )

Wl( U i ¥' j)

= II(u i j)
- II(u., vj

(-J =1,2)

= 1 I(Ui T2)-F(u
i

) , (b)

i

Here II(ui, , ~, a positive integer is Legendre'S incom-

plete integral of the third kind and ; 1 or y J k
i
.

For the special cases where = or j = k the reader

may refer to (BF11li.06) for appropriate formulas. It can be

evaluated by using Formulas (BF430) through (BF440).

If, next, we square (2.6), we have that

CH 1

2 A2
- 3 A

where

,2 2 U 2
sn u

sn2=4

2 A

4 A
3

Repeating the procedure used to obtain Ili , we find that

(use BF340.02)

t

I2i= 

ti

2 I A 4
c dt=- 1 1 ui +

%H (A") s 2 0 3 3
(2.25)

+ 2¥3( 4 -y2 ) EVl(u 4r) - V
v
l ( O° )7

(a)

(2.22)

(2.23)

(2.24)
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2 fV 4 (* 2)

where

V1(ui , r214 = II(*Ui ) $ (a)

_ 2 4E(ui )+ (k -

4 u

k4- 2 > -
4
14
- 3 S) II(u 4)

ns n uiS n cu i dn u i 

1-4 sn ui

(2.26)

(b)

If we take the unperturbed solution (c H)o as our initial

value of OH , the initial value of x3 will be zero and we can

write

X3= H- (O H) o= (
s

e oL) I l i -(Xl'' - 3x3 ')I2 i - X
3
xt 

(2.27)

The remaining three integrals of (4.24) follow easily. They

are explicitly

x, = 6' - (')_ = 0 (2.28)
4 0o

x5 = ' - (41) =- x5 (t-31 2
i) (2.29)

+ (7 (2.25)

V2( ui
1. 

2(y4-1) (k*2_ g

- V 2(,4) 2

- 4) ui
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X
6

= h - (h)o = . (2.30)

while the unperturbed solutions are taken as initial values

of the relevant variables.

Summarizing, we have the secular, first-order solution

for Case (i):

t=-_ c' h C a' C h+ + (a)
PH sG 2b ' b h

2 x
A +A sn u(

+ A2sn ui , 0 < u i c K (b)
H A3 + A4sn2 u* -

(2.31)

( H)o + (s )Ili-(Xx3 2i 3
=H i 1( - 3x 3 'I)I 2 i-x''t , (c)

e, = I ( )o ' - (d)

= ( fb)c - x5' 5 '(t-3I2i) (e)

h =(h) , (f)
0

where ui~ is given by whichever of (2.9),(2.11),(2d13) or

(2.15) applies to the appropriate subcase.

Case(ii): Four real roots with identical roots

This case can be treated as a special case of (i) and can

be further grouped into two subcases.
/



(1) al= a2 A CH or a3= a4 CH: It is seen from (2.8) that

k = 0. Thus all the elliptic functions reduce to trigonometric

functions (i.e., sn u = sin u ,etc.). In either case, equa-

tion (2.6) becomes

c =A 1 +A2 :in u , O < u*< R/2 (2.32)
H A3+A4 sinaui

where the A
i
, i=1,2,3,4, are given by either (2.12) or (2.14)

if a a2 . They are given by either (2.7) or (2,10) if a= a4.

Then ui is given by (2.13) or (2.15) if al= a2 and it is given

by (2.9) or (2.11) if a3 = a4

We note that if we replace (2.31(b)) by (2.32) and if,

for this case (k*= 0), we can evaluate Ili and I2i which

correspond to (2.21) and (2.25). Then equations (2.31) will

give us the first-order secular solutions. It is also seen

from equations (2.21) ,(2.22), (2.25) and (2.26) that if we

evaluate both II(ui, ;j), j=1,2,3,4 and F(u) at k= 0 then

these equations will determine bdth Ili and I2i. Formulas
2 can be foun

for the elliptic integrals II(ui ) and F(u can be found

in [1]. Explicitly, they are [see (BFlll.01) and (BF121.01)3.

F(u*) = ui

*IXuiv 2
II(ui, ) = ut if j = o (2.33)

14
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tan- [(1- y ) 1tan u1]
tan 1/ , if < 1,

(1 a-l1)

(2.33)

tan-1 )) /2 tantan t(' X.-1) tan u(] 2
a__ _1/2__i_ , if > 1.

1/2
(y j -1)

If Y = 1, we can use (BFlll.01), (BF121.01) and (BF11l.06),

and write

II(uil) = tan ui. (2.34)

Thus, the integrals Ili and I2i are determined and equations

(a),(b),(c),(d),(e) and (f) of (2.31), together with (2.32),

give the first-order secular solutions for the six variables

of interest.

(2) a2 = a3: It follows from (2.8) that ks = 1. Thus all

elliptic functions reduce to hyperbolic functions (i.e.,

sn u = tan h u, cn u = sec h u.). Equation (2.6) takes the form

c = Al +A 2tan h ui, 0 < ui _ (2.35)

A3 +A4tan h u*

where the Ai, i=1,2,3,4, are given by either (2.7), (2.10),

(2.12) or (2.14) and u. is given by the associated relation

(2.9), (2.11), (2.13) or (2.15).
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The analysis proceeds as in the preceding subcase, and

we have, from (BFlll.04 ), that if k = 1

F(u±) = -n(tan sec i 
=

am Uj (a)

(2.36)

II(ui, ') = 1 I Cn(tan±i + seci)

(b)

I l+ ' )1/2 2 1)

- j yn J ) ] v).Yj"·i 1 - j soi

.[Here y J cannot take on the value one since II(ui'l) = ] .

Thus the integrals Ili and I2i can be determined by (2.21),

(2.22) and (2.25),(2.26), respectively, and therefore equa-

tions (a),(b),(c),(d),(e),(f) coupled with (2.35), give the

first-order secular solutions.

Case (iii): Two distinct real roots and a pair of complex roots

Let al,a2 be the real roots and let a3, and its complex

conjugate a3 be the complex roots and assume that al > a2.

We can write equation (2.3) in the Jacobian normal form for

complex roots [see (BF250.05) and (BF250.06)]

g du= daH -(A s)1 /2s A dt.
c1,2 + 0O

[(al-ceH) (celH-a2 ) (celH-a3 )( H-a3 1/2 +

(2.37)
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where g is given by the equation

g 1 1

(Al B')

and

A' = [(al - b)2 2]1/2

B' = [(a2- b ) + a ]I= [a --~ 2+ a d /

a

b

= - (a3- a) 2

3

= 1 (a + a
2 3 3

The variable c is now related to u through the equa-

tion

A + A cn up
CH =1 2H A3+ A4cn u-)

3 4
(2.40)

where K has the same definition

new modulus of Jacobian elliptic

Since the time rate of change of

ce must lie between al and a2.

A
1

= alB' + a2A' 9 

A2 = a2A' - alB' ,

as in Case (i) and k- is the

functions and integrals.

c is real, the value of
H

If a1 > c0 > a2 , we have

(a)

(b)

A
3
= A' + B'

A4 = A' - B'

(2.41)

( c)

(d)

(23.8)

(a)

(b)

(2.39)

(c)

(d)
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and k* 2 has the value

k*= (al-a2) - (A'-B') (2.42)

4A'B,

If we integrate (2.37) with respect to time t from t2 to t,

we obtain Csee (BF259.00)]

u =- 1 (A*)1/2 sa (t-t2 ) , (2.43)

where t2 is the value of t at which co = a2 . Substituting
2 6 H 2. II

(2.43) into equation (2.40) we obtain the first-order secular

solution forceH. With the time dependence of coH known,

equation (2.1) gives the first-order secular solution for H.

Proceeding as in Case (i), and using equations (2.40)

and (2.43) in conjunction with equation (2.19), we find that,

to first-order,

VCH dt = - r 1 A 3 l+'3 cn u

9aH (A*)1/2s Ad h(A3-Al) 1 +
'

ln up "
o 1+ +1 lcn uu

+ D2A3 7 d (2.44)

h(A3+A1) 1+ Y2cn u 3 J
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where

lY, A -A2,
3 1

A4 + A 2

A3 + A1

A

3

(a)

(b) (2.45)

(c)

To integrate equation (2.44) with respect to time t, we can

use (BF361.62) and' rearrange it in the form

' H dt = -

sa H

Y3 +
(Aw)

1- I3'Y1 U

1- ylcn u*,

+ D2A3 (

h( A3+A1)

1 - r 3/ ) 
1 +2 cn u*/

+ D3] du.'

If Y 1, and X 2 1,
1 2

(BF341.03) ], that

we find, from (BF361.54) [or from

t

ii =i

ti

D1A33 +
h(A3 -Ai1)

D2 A
3

h( A3 +A 1)
j3 + D3 ) u+

(2.44)

_YH dt
s

.g
1/2-

(A ) i 2 Q T(
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+ D1 A

h( A3 -A1

D2A3

h(A3+Al

*(1- r3

1 3

¥2 ' 3

Y2

[Rl(UC,' ) - R l (
O

, -
)

[R1 (u 9 2 ) -R1(0,Y2)]t

R1 (u ' Ž)

2f = 1- y ,1/2 1
9- 2i tanK)

kk +k '1 i)

2
1 -2 - 1i i

- yi' fl(U-')-T2I

I1 - 1r u I s) d 

, (a)

19
2

if .- I
-1

- sd u ,

2

if ¥i

ai-1

=2
= k

2 2&i)

(b) (2.47)

1/2
dn u t-=( yi-l T

k 2 +k"
4 ' 2(2

1/2

-1) sn u 
l

( i- 1) sn u
~

:k2-+k*, 2 12)

if Yi > k 2
2-1i3

where

(2.46)

1/2
dn u -
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2
If either Yi - 1 or y 2 1, the integral in (2.46) is to be

replaced with the integral given by either (BF361.51) or

(BF341.53),

Equation (2.40)

t

I2i =

can be used to write

C dt
aH

t2

=

( A)1 /2s o 44

A1

A
3

+ 1

(1- Y4 cn

4 =A24 A2

(2.48)

(a)

(2.49)

(b)
A3

Integrating with respect to time, we find from (BF341.03) and

(BF341.04) that

Z Y2 ( 4al'- 4) VR(u , ) 

4 4 4

1
1+ Y cn un

+

where

I =
2

2
A1

2

3
(A-) / 2' -ASC1(0

u 2

o id4

du 2
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-R R( 2) +2 )4(2k -1)-2k 2 R (ui) _

2- k r J R 4 , -2 n (2.5 0)u

whaere

-2(u ,t4) = z (()2_2k_ * p ()

+ k 2yi( 4 k Ucos 1a' lln u )dn u,

-I o = 1, the integrals in (2.48) are to be replaced

i i te -integralsn . Thus

equations (a(b(c,(,(e() o (2.31) together with (2),

where

, y(U u + ¥k cos-(dn u (a)

(2.51)

+ 2¥4 k cos- dn u

and Y4 ~

If , 4 
=

l, the integrals in (2.48) are to be replaced

with the integrals given by (BF341.53) and (BF341.54). Thus

equations (a),(b),(c),(d),(e) ,(f) of (2.31) together with (2,40),

(2.46) and (2.50) give the associated first-order secular

solutions for the six variables.
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Case (iv): Two identical real roots and a pair of complex roots

This ia a special case of Case (iii). It can be shown in

a straightforward manner from (2.40) that if al = a2 then

cH = al and 9H is a constant of the motion. Consequently

YH' HGHe ' and h are all constants of the motion and H and

' are linear functions of time.
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